
TREATMENT PLANNING ALGORITHMS PART 2 OF 2

Modified Batho power law
algorithm
The general form of the algorithm
takes the form

(2)

where xm is the distance transversed
in a region of electron density ρm, 

To understand how the algorithm
works, consider a simple slab phantom
as in figure 1. Regions 1 and 3 contain
water, whilst region 2 contains lung of
density ρ.

In region 2:
CF = TMR(d1 + dmax, S)ρ−1

In region 3: 

If TMRs were pure exponentials, it
can be shown that this would give
results identical to the effective depth
algorithm. However, since TMR curves
fall relatively slowly in the first cm after
dmax, the Modified Batho algorithm
gives slightly smaller CF values than
effective depth. For Co-60 to 8 MV this
improves agreement with
measurement. However, at 15 MV
(where scatter is lower, but the TMR
curves have a wider peak) Modified
Batho under-predicts CF, and effective
depth gives better answers.1

Inverse planning and
optimisation
Objective functions
In traditional ‘forward planning’
techniques, the user chooses a set of
beam parameters (angles, shapes,
wedges, etc.), looks at the resulting
dose distribution and adjusts the
parameters until a good plan is
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Density correction in ‘type a’
algorithms
Since patients are not just made of
water, some correction needs to be
made for inhomogeneities.  

Many 1D algorithms have been
published; two still in widespread use
are the ‘effective depth’ (otherwise
known as ‘radiological path length’)
algorithm and the power law (Modified
Batho) algorithm.

Effective depth
The attenuation coefficients for
Compton scattering depend on
electron density (the number of
electrons per unit volume). Electron
density is usually quoted relative to
water               .

If you integrate                with
respect to distance travelled along the
ray from the source of radiation to a
point of interest, you get an ‘effective
depth’: 

(1)

  deff has many uses in treatment
planning, but the simplest is as a
means of correcting the dose
calculated in water. It can be used to
calculate a ‘correction factor’ (CF) to
correct for the fact that patients are not
water phantoms:

  

This works equally well with TPR or
TAR instead of TMR. It does not work
with PDD, since PDD contains the
inverse square as well as the
attenuation.

Because the dose results from
scattered radiation as well as primary
radiation, the effective depth algorithm
tends to overestimate CF in lungs,
especially at the lower end of the MV
range (Co-60 to 6 MV). It is for this
reason that algorithms such as the
power law algorithm were developed.

FIGURE 1. Illustration of power law algorithm

 

       

 

FIGURE 2. Quadratic objective function to a target
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FIGURE 3. Quadratic objective function to an organ at risk
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Dr Simon Thomas1 continues his introduction to the main types of photon algorithms
used in treatment planning systems, following on from Part 1 which appeared in the
previous edition of Scope
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achieved. In IMRT, the large number of
parameters makes this approach
impracticable, so instead ‘inverse
planning’ is performed, in which the
computer adjusts the parameters until
the ‘optimal’ plan is achieved. For this to
happen, one needs a mathematical
representation of how good a plan is. An
objective function (OF) is essentially just
a mathematical measure of how ‘good’
a plan is. An OF of zero represents the
plan that meets all your requirements;
the function gets larger the further the
plan is from the ideal. There are a large
range of functions in use in commercial
planning systems. The aim of this
tutorial is to give an overview of the
types of functions in use. The terms
‘objective function’, ‘cost function’ and
‘penalty’ will be treated as equivalent. 

Dose based
The simplest form of objective is to
specify a desired uniform dose to a
target volume. For example, in figure 2
we are aiming for a dose of 60 Gy. Any
voxel in the target that has a dose that is
higher or lower than this will add to the
objective function, with the penalty
typically being proportional to the
square of the difference from the
required dose.     

A similar objective function can be
used for organs at risk (OARs), but with
the difference that we are specifying a
maximum dose to the organ, and have
no objection to doses below this dose.
We therefore have a one-sided
quadratic (figure 3). A shortcoming of
this function is that doses only just
above the maximum (50 Gy in this
example) have only a small penalty,
which is why it is often necessary to
manipulate the planning system by
specifying a maximum that is lower
than you will truly accept.

These give the simplest form of a
quadratic objective function, summed
for all the points in the relevant volume:

where wtarget and wOAR are arbitrary
‘weights’ or ‘importances’ (different
planning systems use different names)
for the target and OAR, respectively. H is
the Heaviside function, such that:

H(x) = 1 for x › 0, H(x) = 0 for x ‹ 0

The summation is over all the points
in the relevant volume (with rules,

depending on the planning system, for
dealing with overlapping volumes). The
higher the weight for an organ, the more
important it becomes to meet the
objective for the organ. If the OAR is so
close to the target that both objectives
cannot be met at once, then choosing
wtarget very much greater than wOAR will
ensure that the target objective takes
priority over the OAR, whilst choosing
wOAR very much greater than wtarget will
cause the OAR to be spared, at the price
of target coverage. In practice you will
have several targets and OARs, each
with their own weights.  

DVH based
The main alternative to dose-based
objectives is to use objectives that are
dose volume histogram (DVH) based.

For a target, the objective will be to
pass to the right of a DVH point. For an
OAR, the objective will be to pass to the
left of a DVH point. A high dose
maximum in a target behaves like an
OAR. Figure 4 shows examples of DVHs
that are failing to meet the objectives.  

Various mathematic functions can be
used to give a penalty for a failing DVH
objective. A simple example is to look at
the distance from the point to the curve
(Δ in the figure), and to have a penalty
equal to wΔ2, where w is a weight.

Radiobiologically based
A third alternative, which is mainly of
interest in a research setting, is to
create objectives based on equivalent
uniform dose (EUD), tumour control
probability (TCP) and normal tissue
complication probability (NTCP). It is
beyond the scope of this tutorial to go
into the details of these models. A
change of mindset is required in those
who view the resultant plan, as a plan
with a uniform dose to the PTV may in
fact be worse radiobiologically than one
that adds hot-spots to parts of the PTV
distant from the OAR.  

Optimisation algorithms
The ‘optimal’ plan is the one that has the
lowest objective function. This will only
be clinically optimal in cases where the
objective function matches the true
clinical objective, and avoids a number
of pitfalls to be discussed later. For now,
we will assume the objective function
has been well chosen, and we wish to
minimise it.

We will have a number of
parameters to vary. What these
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parameters are will depend on what
form of IMRT you are planning. This
may be:
n an array of fluences in each of
several beams;
n a set of MLC openings and monitor
units in ‘direct machine parameter
optimisation’;
n MLC parameters as a function of
gantry angle in VMAT, or
n a set of leaf opening times at a
number of control points in helical
tomotherapy.  

Whatever the parameters represent
physically, they will reduce
mathematically to a set of numbers,
subject to sets of rules limiting their
values (for example, monitor units
cannot be negative). The job of an
optimisation algorithm is to choose the
set of parameters that gives the lowest
possible value of the objective function.
Generally there will be hundreds or
thousands of parameters being varied.
In the examples below I will illustrate
algorithms with graphs with one or two
parameters; the reader will need to use
their imagination to extend these to n-
dimensional space.

Figure 5 uses a quadratic objective
function (OF) for a target and OAR in a
three-field plan with wedges, keeping
the two wedged laterals constant at 70
per cent weight, and seeing how the OF
varies as the anterior weight varies. For
a well-behaved OF like this, it is easy to
devise an algorithm to find the
minimum, at a beam weight of
approximately 110 per cent.

Figure 6 shows a contrived OF curve
for a more complex objective function.
Here, there is a ‘local minimum’ at a
weight of 90 per cent. An algorithm that
finds this minimum runs the risk of
erroneously reporting this as the true
minimum. This is referred to as ‘being
trapped in a local minimum’. 

Figure 7 shows an OF for a four-field
prostate plan, where the lateral weights
are constant and the posterior and
anterior weights are variable. The
objective function is based on the dose-
volume histograms to two PTVs, the
rectum and the femoral heads, plus a
dose-based objective to keep other
tissues below 107 per cent.

The global minimum is at 22, 95, but
there are a number of local minima.  

This plot illustrates the complexity of
an objective function, even with only two
variables. In most cases of IMRT
optimisation the number of variables is
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several thousands, so the topography
would have to be seen in n-
dimensional space.

The most common approach used
in commercial systems is some variety
of gradient descent algorithm. In the
simple case of a 1D or 2D problem, this
can be viewed as analogous to a skier
following the slope down to the valley.

For this reason, these algorithms
are sometimes known as ‘downhill
techniques’. 

Before considering the
multidimensional case, we will
consider the maths for a one-
dimensional case.

Newton’s method
Consider the objective function shown
in figure 6, which has a minimum at a
beam weight of 107 and a local
minimum at a weight of 91.

At the start of optimisation we will
have picked an arbitrary beam weight.

Simple down-hill optimisation
would keep making small changes in
beam weight until it finds a region with
zero slope. This would take a large
number of steps if the initial value was
far from the final solution, and would
get trapped in the local minimum for
any starting value to the left of the local
minimum.

Newton’s method calculates the
size of the step to move for the next
iteration, on the basis of the slope
(dy/dx) and the slope of the slope
(d2y/dx2).

Starting from a beam weight X1, we
can estimate the next step X2 using the
following:

X2 = X1 – (dy/dx)/(d2y/dx2)

Unless you are unlucky in your
choice of starting point, this method
will usually jump over the local
minimum and converge to a point near
the true minimum in only a few
iterations.

Newton’s method can be extended
to the multidimensional case, to
calculate how far to go at each step of
the iteration. This relies on being able
to calculate the first and the second
partial derivative with respect to each
of the weights.  

The matrix containing all the
second partial derivatives is known as
the Hessian matrix. It can be shown
that for a pure quadratic OF, one can
get straight to the optimal solution in a

▼
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single step calculated from the product
of the gradient and the inverse of the
Hessian.

For more complicated OF, this will
usually give a move towards the optimal
solution, which is then the basis for the
next iteration. There are a number of
variants of this, known as ‘quasi-
Newton’ methods, which are beyond
the scope of this tutorial. The key points
to remember about the method are:
n The objective function must not have
any sudden steps in it.
n The slope of the objective function
must not have any sudden steps in it.
n Convergence to a solution can be
fast.
n The method can get trapped in local
minima.

Simulated annealing
A method that was used in some early
inverse planning systems (such as
Corvus) was simulated annealing. The
name is chosen by analogy to the
physical process of annealing, which is
the name for any technique that
involves heating something up and then
letting it cool down (figure 8).  

When a particle has a high
temperature, it can easily jump from
one energy state to another. As it cools
down, it settles in a single state.
Simulated annealing is a mathematical
technique that imitates this; initially the
parameters can make large changes.
Changes that decrease the objective
function will always be accepted; at a
high temperature some of those that
increase it will also be accepted.

As the simulated ‘temperature’
decreases, the probability of accepting
a change that increases the objective
function decreases. At low
‘temperature’, simulated annealing
becomes more like a downhill method.

Simulated annealing can deal with
objective functions with discontinuities
and objective functions with local
minima.

Gradient methods (e.g. quasi-
Newton) are much faster than
simulated annealing. In practice, this
means that most commercial planning
systems use some sort of gradient
method. 

In practice, local minima are less of
an issue than might be imagined. You
should never blindly accept the first
‘optimised’ solution a planning system
comes up with. A small change in
objectives and weights, followed by

FIGURE 4. The use of DVH as an objective. All objectives in
this example are failing to be met

FIGURE 5. A simple OF
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FIGURE 6. OF with local minimum

0

2

4

6

8

10

12

14

16

18

20

80 90 100 110 120 130 140 150

percentage beam weight

O
F

 

 

 

      

 



IPEM SCOPE | DECEMBER 2016 | 31www.ipem.ac.uk

reoptimising from where you left off,
will generally get you out of a local
minimum.

Objectives and constraints
I have carefully stuck to the word
‘objective’ so far in this tutorial, and
avoided the word ‘constraint’. Whilst
some people (and some authors of
planning systems) use these terms
interchangeably, there is an important
distinction that should be made.

An objective is something you would
like to achieve, but will compromise on
if necessary where it conflicts with
other objectives. A constraint is a rule
that cannot be broken. Some
constraints are physical, such as
limitations on MLC leaf speeds, or the
inability of linacs to deliver negative
radiation (thus setting a constraint that
segments cannot have negative
monitor units). Constraints can also be
dosimetric parameters that will cause
a plan to be rejected. For example, an
oncologist may wish to keep the dose
to the spinal cord below 45 Gy
(objective), and will refuse to accept
any plan in which the spinal cord
exceeds 50 Gy (constraint). This
distinction is a useful one when getting
oncologists to communicate what they
want, and can be used on prescription
forms.

However, not all planning systems
follow this convention. Some (such as
Pinnacle) do, but others use terms
such as ‘hard’ or ‘soft’ objectives. Some
(such as Tomotherapy) call everything
a constraint. In practice, in most
planning systems, the only way to
distinguish them is to give much larger
weightings to the objectives that you
deem to be constraints.

Pareto optimisation
IMRT optimisation usually has many
objectives, some contradictory. For
organs at risk near a target volume,
there is often a trade-off between
different objectives.

The standard solution is to play with
the weights of these objectives until
you get a plan you are happy with. This
involves trial and error by the planner,
and the compromise chosen by the
planner may not be the same as the
one that would have been preferred by
the clinician.

A technique that addresses this
limitation is known as Pareto
optimisation, sometimes referred to as

FIGURE 7. 2D OF topography. Red represents the highest OF
values, purple/pink the lowest

 

 

 

    

 

FIGURE 8. Simulated annealing
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‘multicriterion optimisation’. This
looks at how the trade-off occurs,
and explores the set of possible
plans. The method derives from the
work of Vilfredo Pareto (1848–1923),
an Italian economist.

For example, consider a plan in
which you had set achieving the
prescription to the target as a
constraint, whilst wishing to keep the
doses to the cord and to the lungs as
low as possible.

Instead of giving weights to each
of these objectives, the system would
produce a set of plans, all of which
met the target volume constraints,
and evaluate the chosen parameter
to each organ (which may be mean
dose, near-max dose or some
biological function such as EUD or
NTCP). The set of these would be
explored to determine the Pareto
front, which is the red line in figure 9. 

The planning system would then
allow the planner or clinician to
scroll through the set of plans, and
choose their preferred one. In a real
case there will be more than two
variables. Interactive displays that
allow plans to be selected by
multiple sliders have been
developed, including the ability to
‘lock’ an organ.

Pitfalls of inverse planning
Baggy plans that meet all
objectives
If you produced a plan optimised with
an objective function based on the
PTV and all relevant OARs, it would
probably not conform tightly to the
PTV, since a plan with over-generous
coverage will usually result in a
slightly more uniform dose to the
PTV. One potential way to avoid this is
to treat all voxels that are not in any
other volume as a remaining volume
at risk (RVR) as defined in ICRU83.2

However, this is not generally
enough to ensure that plans conform
tightly. In practice, it is necessary to
create one or more ‘ring’ structures
around the PTV, setting these as OARs
with limits on the dose allowed in
these rings.

Fluence loading at skin
surface
A common situation in radiotherapy
is for the CTV to end a number of
millimetres from the skin surface,
but for the PTV to extend to the skin;
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there is no disease in the skin, and
the oncologist wishes to spare the
skin. The PTV margin allows for
geometrical uncertainties in setup,
but these uncertainties generally
preserve the distance of the CTV from
the skin.

In a forward planned solution, one
ends up with plans where the build-
up effect inherently produces the
desired skin-sparing. However, in
inverse planning, this is seen as an
underdose to be addressed, and the
algorithm will add fluence into the
part of the PTV outside the CTV, as
shown in figure 10.3 This gives
unnecessary dose to the skin.

There are two ways to avoid it. One
method is to pull the PTV back from
the skin. However, this will then
mean that the plan is not robust to
geometric uncertainties so should
only be done if your planning system
allows the beams to be extended after
optimisation, with a function such as
‘add flash’. In planning systems that
do not permit the addition of flash,
another solution is the use of ‘pretend
bolus’,3,4 in which the plan contains
bolus (not present for treatment) to
convince the optimiser that there is
no under-dose to correct.

Magnetic fields
The introduction of machines which
combine an MRI machine with a linac
or cobalt unit means that the effect of
magnetic fields needs to be
considered. An electron moving
through an electric field experiences
a force that is perpendicular both to
the motion and the field. As a result,
kernels calculated in an assumption
of no external field cannot be used
directly.  

Monte Carlo-based systems can
model this effect by adding the effect
of the magnetic field. The planning
system sold with the ViewRay
MRI/cobalt system (MRIdian) is
Monte Carlo based, with the
magnetic field modelled in the
calculations. Several groups are
developing Monte Carlo algorithms
for MRI-linacs; the GPUMCD code
from Utrecht is being incorporated
into Monaco.5

LBTE-based algorithms can in
principle be extended to include
magnetic fields, although no
commercial system currently uses
this approach.  

▼
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Dose calculation for charged
particles
The emphasis of this tutorial has been
on radiotherapy delivered with x-rays,
since this constitutes the majority of
radiotherapy delivered in the UK and
elsewhere. I will briefly touch on the
issues of treatment planning for
electrons and for protons.

Electrons
Photon algorithms tend to be good at
modelling primary radiation and OK at
modelling scatter. Electrons are
nearly all scatter, so are much harder
to plan accurately. Measured beam
algorithms are dangerously wrong in
anything but a water phantom. Whilst
pencil beam algorithms are OK to
indicate qualitative shapes of dose
distributions, they have severe
limitations when used to make
quantitative predictions. The only
reliable method for electron planning
is Monte Carlo.

The most widely used pencil beam
model is the Hogstrom model6 based
on Fermi-Eyges scattering theory of
multiple Coulomb scattering. The
Gaussian sigma depends on depth (z)
and density. Depth dose is based on
measured depth dose in water, scaled
for effective depth. 

This algorithm can work in some
cases, but can disagree greatly with
measurement, especially at different
SSDs from those measured. It tends
to underestimate the effects of sharp
discontinuities in density, but is useful
to produce qualitative plans showing
clinicians how much worse the dose
distribution is than they imagined.

The discussion of Monte Carlo
algorithms in the first part of the
tutorial applies also to electrons.
VMC++ and MMC are in use in
different commercial systems for
electron planning. To commission an
MC-based electron algorithm, you
need accurate knowledge of the beam
parameters. These include primary
electron energy (0.2 Mev changes
range by 1 mm), materials and
dimensions of scattering foil, monitor
chamber, applicators and cut-outs.
You also need accurate knowledge of
CT to electron density conversion. It is
vital to validate any model against the
full range of field sizes and SSDs, and
in a variety of heterogeneous
phantoms (modelling lung, air, ribs,
etc.).

FIGURE 9. The red line represents a Pareto front

         

 

FIGURE 10. The edges of the beams have increased fluence
to compensate for build-up

FIGURE 11. A single Bragg Peak and a Spread Out Bragg
Peak composed of peaks of multiple energies
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Protons
In contrast to the situation for
electrons, ‘pencil beam’ algorithms
give reliable answers in simple
phantoms for proton beams. This is
because the mass of a proton is
1836 times greater than that of an
electron. Hence, the assumption
can be made that a proton will
usually continue in a straight line as
it loses energy by ionisation.

Several manufacturers,
including Varian (Eclipse), Elekta
(Xio) RaySearch (RayStation) and
Philips (Pinnacle) have systems
based on pencil beam algorithms.
The method of calculation will
depend on whether the delivery
system uses a passively scattered
beam or spot scanning. The depth
dose for an individual spot (which
follows a Bragg peak such as in
figure 11) and the variation of lateral
spread with depth can be derived
from Monte Carlo calculations, then
combined in a series of 2D
convolutions in a similar manner to
photon pencil beam calculations.
The lateral spread results from a
number of interactions, including
multiple Coulomb scattering and
nuclear interactions.7

The reason for choosing pencil
beams rather than Monte Carlo has
been to ensure fast calculations.
However, algorithms such as
Accuros PT (recently announced by
Varian) and VMCpro are claiming
acceptable calculation speeds for
MC-based solutions.

In x-ray radiotherapy, a change
of 1 cm in the effective depth to the
target (caused, for example, by the
patient gaining or losing weight, or
changes in bladder or rectal filling)
will cause the dose to change by a
few per cent. In contrast for
protons, the same change will
cause the Bragg peak to shift by 1
cm.

As a result, one may not deliver
the plan one was expecting. Since
different shifts will come from
different beam directions,8 some
plans will be more robust to
uncertainties than others. The use
of a PTV margin is not necessarily
the best solution in highly
modulated IMPT plans,9 and
forward planned solutions may give
more robust solutions than some
inverse planned solutions. 

Summary 
n Photons: there are a wide range of
algorithms as detailed in table 1.
Some are faster than others; some
are more accurate than others. Some
are better in simple geometry; some
are better in complex geometry.
Always test your system to find its
limitations.
n Electrons: with the exception of
Monte Carlo, don’t believe the
answers. Even with MC test your
system to find its limitations.
n Protons: several new systems are
being developed. Not all plans that
look good are robust to geometric
uncertainties.
n Read the documentation that
comes with your planning system. It
will usually explain the algorithms in
great detail. An understanding of the
algorithm helps to know what to test.
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Table 1. Types of algorithm
for MV x-rays

Does the algorithm model the
variation of penumbra with density?

No (‘type a’) Yes (‘type b’)

Not

kernel

based

Measured beam

data models

(still used in some

independent

checking

systems and

some in-house

planning

systems)

Monte Carlo:

Monaco, iPlan,

MultiPlan,

MRIdian

Linear Boltzman

transport 

equation:

Eclipse (Accuros)

Point

kernels

FFT convolution:

Xio                       

Collapsed cone

superposition: 

Xio, Pinnacle,

RayStation,

TomoTherapy,

Monaco, OMP

Pencil

kernels

‘Pencil beams’:

Monaco,

RayStation,

Eclipse, iPlan,

MultiPlan             

AAA:

Eclipse
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